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ON SINGULARITIES IN THE SOLUTION OF A PROBLEM FOR AN ELASTIC HALF-PLANE 
WITH A ROD EMERGING ORTHOGONALLY ON THE BOUNDARY* 

L.yA. TIKHONENKO 

An integro-differential equation in the contact stress is investigated for 
the problem for an elastic half-plane (isotropic and orthotropic) with an 
extensible rod emerging orthogonally on the boundary. The question of 
the nature of the contact stress singularity at the point where the rod 
emerges at the boundary is clarified. It is shown that the asymptotic 
form of the Cauchy-type integral does not enable a single-valued solution 
of the question of the nature of the singularity to be obtained if it is 
assumed to be power-law logarithmic. The true nature of the singularity 
is determined by an exact solution of the equation constructed using the 
Mellin integral transform and the Carleman boundary value problem for a 
strip /l/. 

The problem of the contact of an elastic half-plane with an extensible 
rod emerging orthogonally at the boundary was examined in /2/ in the 
isotropic case. A deduction is made there about the presence of a power- 
law singularity in the contact stresses at the point where the rod eme'rges 
at the boundary. This same problem was examined in the orthotropic case 
in /3/, in which a deduction is made on the basis of an asymptotic 
investigation and an exact solution of a problem constructed in the limit 
case of strong orthotropy that the contact strrss singularity is of a 
power-law logarithmic nature, unlike /2/, where it becomes.logarithmic 
for zero values of Poisson's ratio. In /3/ doubts were raised about the 
validity of the deductions made earlier in /2/ on the nature of the 
singularity, and the validity of taking a power-law logarithmic singularity 
for the isotropic case also. 

It is shown below that the asymptotic form of a Cauchy-type integral 
does not enable the question of the nature of the singularity to be solved 
uniquely, if it is assumed to be power-law logarithmic. Consequently, the 
validity of the deductions in /2/ is confirmed; the singularity also turns 
out to be a power-law for an orthotropic half-plane and goes over into 
the logarithmic law only in the case of limiting strong orthotropy, which 
refutes the corresponding deduction in /3/. 

1. The problem for an elastic half-plane (--a, < r< 00, y> 0) with a rod extensible by 
a force Q and located on a line (z = 0, O< y< I) is reduced in /2, 3/ to an inteqro-differen- 
tial equation in the axial force in the rod r+,(y) 

O<y<l, n=l,2 (1.1) 
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The value n = 1 characterizes the isotropic case, II = 2 the orthotropic case, S and 

E. are the cross-sectional area and the elastic modulus of the rod, h is the plate thickness, 

E, v and EW v1.~ are the elastic moduli and Poisson's ratios, respectively, in the iso- 
tropic and orthotropic cases, and the constants Aj(j - I,&..., 6) and J.,,, are related to 
the elastic properties of the orthotropic material and are determined in /3/. The function 

(pn' 6) is sought in the class of integrable functions. 
Besides the Cauchy kernel, the kernels of the equation contain components having a fixed 

first-order singularity at the point y = 0. The presence of these components changes the 
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nature of the behaviour of the function r&,'(s) as s-+0 , it ceases to be a radical as, for 
instance, as s-+ 1, and requires refinement. Knowledge of the nature of the singularity of 
the solution is important to be able to construct effective approximate solutions, where the 
need for their construction is dictated either by there not being an exact solution of the 
problem, or by the complexity of its numerical realization. 

First we will refine the nature of the singularity of the function cp,'(s) as s-,0, being 
guided by the scheme in /2, 3/, which is based on the asymptotic form of a Cauchy-typeintegral 
near the neds of the line of integration, and by setting 1= 00 for simplicity. We will show 
that this scheme does not resolve the question of the nature of the singularity uniquely, if 
it is assumed to be a power-law logarithmic singularity. 

Indeed, let the function Q,(IJ)E C,(U, CO) and a function.. +,(s)~H[o, CQ] exist such that 

(F~' (s) = 9, (s) s-"n In"s, 0 < Rey, < 1, k is an integer (1.2) 

The representation (1.2) generalizes the assumptions in /2, 3/ about the nature of the 
singularity Q,'(S) in which we set k = 0 and k = 1, respectively. To determine the number y,, 
we will write down the asymptotic form of the singular integrals in (1.1) by taking the 
asymptotic form of an integral of Cauchy type with density (1.2) in the neighbourhood of the 
point y = 0 (/4/, Ch.1, Sect.8.6) as basis: 
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a = const > 0, (Pm (y) = 0 (y-n In"-'y), y -_, 0, m = I, 2, 3 

The requirement that (1.1) should be valid even at the point I/ = 0 taking the asymptotic 
form (1.3) into account, enables us, after multiplying both sides of the equation by yVn In-&y 
and passing to the limit as Y-V 0, to write down the characteristic equations to determine 
the constants yn: 

fl hJ = 0, Iz (v*) = 0 (1.4) 
fl (y) = cos n (1 - v) - 2x-l (1 -v)* + (9 + 1) (2x)-l, 
x = (3 -v) (1 + v)-' 

The first equation corresponds to the isotropic, and the second to the orthotropic cases. 
According to /2, 3/, both equations have no complex roots whose real parts lie in the ,interval 
(0,l) under the conditions O<v <r/a and Ala> 0, respectively. Under these same conditions, 
both equations have just one real- root Y~.~E (0, I), while y1 = yI = 0, respectively, under 
the conditions v = 0 and vr = vz = 0 . 

Therefore, under the above-mentioned conditions for an isotropic and orthotropic material, 
the singularity of the functiong+,'(s)at the edge of the rod has the form 

cp,' (6) = 0 (s-V* In's), S-W 0 
we should set y1 = y2 = 0 in the case v = 0 and v1 =vz = 0 and the singularity will 

become logarithmic. 
The results obtained, as well as the results in /2, 3/, are not in mutual agreement. 

This is explained by the fact that the asymptotic of the Cauchy type integral (1.3) enables 
us to determine just the constants Y,,without in any way fixing the number k, assumed here to 
be an integer to simplify the discussion. Rejection of this assumption does not cause any 
difficulties in principle since the formulas for non-integer k, analogous to (1.3), can be 
obtained by a well-known scheme (/5/, Sect.6.7). 

The above result enables us to deduce that the conclusion in /3/ about the falseness of 
the assumption in /2/, associated with the determination of the nature of the singularity in 
the function m,,'(s) is without foundation. This is verified below by separating the singular- 
ity in the function q,,'(s) on the basis of the exact solution of (l.l), 

2. Let us construct the exact solution of (1.1). To this end, we convert it to the 
form 

(2.1) 
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The integral term in (2.1) is a Mellin convolution for the transformation of the same 
name /6/ 

m c+*C4 

@ (p) = s ‘p’ (s) sp-1 ds, cp’ (s) =e & 5 Q (p) s-~ dp (2.21 
0 c-i00 

We shall seek the solution of (2.1) in the class of functions cp,‘(s) possessing the 
asymptotic (pn' (s) = 0 (.+), s -+ 0, 0 < E < 1; (pn’ (S) == 0 (s-‘-~), s -+ 30, 6 > 1. In this case, for the 
Mellin integrals to exist, a constant C in the integrals (2.2) should be selected from the 
interval (e,l) from the functions in (2.1) (in practice, the contour of integration in the 
second of the integrals (2.2) should be to the left of the line Rep = 1). 

We apply the Mellin transform (2.2) to equation (2.1). Using its properties /6/, we 
arrive at a Carleman boundary value problem for the strip /l/ 

Co,,@, i- 1) + P,,G,,@~)% (pO) = 0, Rep, = c (2.3) 
G, (p) = -163~~ (x + l)yl (p) [sin x (1 - p)l-’ 

G, (p) = --II (A& - A&,) (&)-*f2 (p) [sin n (1 - p)l-’ 

The function f,,(p) is defined by (1.41, and the function UI,@) is analytic in the 
strip C( Re p (I + c. The method of partial factorization /l/ enables us to reduce problem 
(2.3) to the standard form 

Y, (pa + 1) + K, (pd‘Y, (PJ = 0, Rep0 = c 

Yy, (p) = @” @)6,-p [r (P) cos (1/JxPl-1 

(2.4) 

8, = 16x~,x (x + I)+, 6, = “~2 (A,& - A,&) (h&,)-’ 

K, (p) = ctg ('l& f,, (p) [sin a (1 - $)I-’ 

Here the function y,,(p) is analytic in the strip c< Re p< 1 fc everywhere with the 
exception of the point p = 1, where a simple pole is found. The function K,(p) is continu- 
ous on the line Rep = c , does not vanish, possesses an asymptotic form K,(p)= 1 + O(erp 

(--'/a x I P I))? I P I - OS2 ’ and has an increment of the argument equal to zero. In this case the 
solution of the Carleman boundary value problem for the strip (2.4) is given by the formulas 
/l/: 

Y,, (p) = B,X, (p) [sin npl-‘, c < Re p < 1 + c (2.5) 

c+ioo 

X, (p) = exp { S In K,,(s) [e*d(*-p) - 11-l ds} 
e-b 

Here &is an arbitrary constant, which sould be fixed by the condition (P,(O) = 0. It 
is convenient to realize it in the formula 0, (I)- -Q, which is equivalent to the initial 
condition since (pn(oo)= 0. As a result of realization of the transformed condition, we 
obtain, using (2.4) and (2.5), 

B,, = -2Q (6,X, (I)]-’ (2.6) 

The second formula in (2.21, as well as (2.4)-_(2.6), yield a solution of the integral 
equation (1.1) in the form of the Mellin integral 

Q 1 
%I (Y)=--z 

c+‘- r@)x;(P) s X,(i)sin(+sp) * (1 
-' dp 

e-ioo 
12.7) 

Here X,+ @) is the limit value of the function X,(p) that is analytic in the strip 
c<Rep<c+1 to the right of the line Rep=c. To clarify the behaviour of the function 

(pn' (Y) as Y- 0 I the value of X,+(p) should first be replaced in the integral (2.7) by the 
limit value of the function X,-(p) that is analytic in the strip -1 +c(Re p(c to the 
left of the line Res = c. The replacement is made by means of the formula /I/ 

X,- (P) = K, (P)%+ (P), Re P = c 

After this replacement, the integrand in the integral (2.7) is analytic everywhere in 
the strip --i+c<Rep<c, with the exception of the zeros of the function f,(p). Applying 
the theorem on residues to this strip, we replace the integral over the line Rep = c by the 
sum of residues relative to the zero of the function f,,(p) and the integral over the line 
Rep=--I+c. This residue indeed determines the behaviour of the functioncp,' (y) on the edge 
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of the rod. 
Taking into account the arrangement of the simple roots of (1.4), we find that for U< 

v < 112 and &'>O , respectivley, the function %' (Y) has a power-law singularity of the 
yrz 6-f (Y) = 0 (Y-'% where yn are real zeros of the function f,,(p) . For v = 0 and v, = 

'2 we have y1 = 0 and yz = U, therefore, the function q,,'(Y) is here bounded as Y+ 0. 

To determine the behaviour of the function r&,'(y) at infinity, Cauchy's theorem should be 

applied to the integral (2.7) and the contour of integration should be shifted from the line 
Rep =c to the line Rep=l+c. Then utilizing the formula connecting the limit values of 
the function X,(p)on the line Rep = 1 + c, we find, by the theorem on residues, that 

(Fn' (Y) = 0 (Y?. This confirms that the class in which the solution of (2.1) is sought has 
been selected correctly (6 = 1). 

Let us examine the limit case of strong orthotropy (E+ o), for which the exact solution 
has been constructed in /3/, and the logarithmic singularity of the function qZ'(y) as y-,0 
has been clarified on the basis of this, In this case the kernel of (1.1) takes the form /3/ 
(Go is the shear modulus of the orthotropic material) 

(2.8) 

Repeating the calculations made above, we arrive at the Carleman problem (2.3) with the 
coefficient 

G2 (p) = -nl/E,Go-lfi @) [sin n (I - p)l-‘, f2 (P) = 
cos n (1 - p) + 1 

which is factorized into elementary functions and enables us to put X(p)= 1 in (2.5)-(2.7) 
and to write the solution of (1.1) and (2.8) thus: 

Q 1 
(Pz'(y)=- & & 

,+j- ep (p) 
-- s y-p dp, 81 = SE, 

c--i00 
sin W~P) h )/&Go (2.9) 

The behaviour of the function (2.9) as y -,O is determined by the nearest singular point 
of the integrand to the line Rep = e in the half-plane Re p<c. Such a point is the second- 
order pole p = 0. The residue relative to this pole has a component containing the factor 
In y. Therefore, the function q,,'(Y) defined by the integral (2.9) has a logarithmic singular- 
ity as Y- 0, which agrees with the result obtained in /3/ for (1.1) and (2.8). 

Therefore, the dependence of the singularity of the function m*'(y) on the edge of the 
rod on the relationships between the elastic constants has been found indirectly by locating 
the zeros of the function f2@)in the strip O<Rep<l. Thus, for h,*> 0 the function f*(p) 
has a ingle real simple zero yp> 0 

v1 = v* = 0 
that determines the asymptotic cpl’ (y) = O(p), y-0. For 

the zero y1 is at the point p = 0 

Y - 0, 
and the function rpz'(y) becomes bounded as 

while for v1 =v2 = 0 and the limit case of strong orthotropy, the point p = (I becomes 
a zero of multiplicity two for the function 

R‘ (Y) = 0 (In Y), y-t 0. 
j, (p), which determines the asymptotic form 

Thus, the assumption /2/ of a power-law form of the contact stress singularity on the 
edge,of a rod is completely justified, while the assumption in /3/ of a power-law logarithmic 
form for this singularity for A,*>0 and a logarithmic-type form for vr =v)= 0 is incorrect. 

The author is grateful to G.YA. Popov for his interest. 
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